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1 INTRODUCTION

The robustness of a predictor f is typically characterized by its ability to remain invariant to certain
perturbations in the data. Numerous studies have defined frameworks for perturbations, proposed
robustness metrics, and introduced techniques for training predictors that uphold these definitions.
However, due to the lack of precise frameworks, and measures of independence for continuous,
high-dimensional variables, such approaches often fall short of practical usability. For example, in
the NLP domain, a common task is to remain invariant to the sentiment of some sentence when
predicting it’s usefulness. However, approaches for learning robust predictors for this task often
made two crucial assumptions. Firstly, the choice of following either the Equality of Odds (Selbst
et al., 2019) or Demographic Parity (Barocas & Selbst, 2016) framework was arbitrary. Secondly,
in order to achieve these, works considered sentiment as a binary variable, which enables the use
of simpler distance measures between probabilities. In this work we aim to find a more principled
way to robustness with the help of causal learning and discuss how this relates to former works.
Moreover, we review former works und current approaches for ensuring independence of high-
dimensional variables. Lastly, we carry out experiments to measure the practical effectiveness of the
proposed methods.1

Robustness can be formulated as an invariance criteria,for example as f(X(z)) = f(X(z′)), where
X(z) denotes that the data depends on some Z where z, z′ ∼ Z are realizations of Z. However,
this conceptual definition leaves room for how we define P (Z), the relationship between Z and X ,
as well as how we quantify robustness. To this end, several frameworks have been researched, that
connects to robustness and generally define some parts of these design choices:

1. Adversarial perturbations (Madry et al., 2018; Goodfellow et al., 2014b): This line of re-
search quantifies robustness by identifying the smallest perturbation to the data that changes
the prediction, typically in classification tasks. The data is commonly altered by adding
Gaussian noise to either a specific dimension or all dimensions, though methods may vary
across studies. In its simplest form, we can summarize adversarial perturbations as meth-
ods where Z ∼ N (0, 1) andX(z′) = X+z′. The optimization problem can be formulated
as a min-max problem over F and ||z||. On the other hand, the resulting data samples are
often unnatural, thus predictive performance may be lost in order to gain robustness against
samples that do not arise in the real world.

2. Out-of-domain testing (Hendrycks & Gimpel, 2017): here, Z is generally taken as a cate-
gorical random variable where different realizations refer to different domains. While the
relation between X and Z is left undefined, robustness is measured as difference in per-
formance between domains that have used for training and such that are unknown for the
model.

3. Stress testing (Veitch et al., 2021): In this category, one explicitly defines Z and how
Z effects X , even if this is often done on a high level. For example, Z can denote the
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Figure 1: Three cases discussed in Theorem 3.2 in Veitch et al. ?

sentiment of a sentence and realizations may be X(z) =The pizza was great, X(z′) =The
pizza was bad. Measuring robustness similarly varies over works, and depends on whether
one can generate counterfactual data samples.

In this work we focus on robustness in the natural sense, where perturbed examples are not adver-
sially generated but following some natural law. We discuss works for all parts: (Section 2) how X
and Z are related and how Z may be correlated with Y , (Section 3) what are ways to learn a pre-
dictor f that is invariant w.r.t. Z given the framework, and finally (Section 4) we show empirically
how the different design choices, especially the choice of p(Z) effect all former parts and thus the
evaluation of a robust predictor.

2 A CAUSAL FRAMEWORK FOR ROBUST LEARNING

Whilst the target of robustness must be defined for every domain specifically, Veitch et al.
(2021) note that on a high-level, the data generating process inherently implies certain independence
relationships between the prediction Y = f(X) and the confounder Z, given that f is invariant w.r.t
Z. In specific, the authors conceptually define X⊥

Y , X⊥
Z and XY ∧Z that denote the ”parts of the

data” that is independent of Y , of Z or influenced by both of them respectively. Moreover, they
discuss the cases where X causes Y (causal) and where Y causes X (anti-causal). They also dif-
ferentiate between the type of non-causal associations between the confound variable Z and Y . The
resulting CSMs are depicted in Figure 1. The authors use this conceptual separation ofX and define
counterfactual invariance as follows:

Proposition 1 (Counterfactually invariant predictor) A predictor f is counterfactually invariant
toZ if f(X(z)) = f(X(z′)) for z, z′ ∈ Z holds almost everywhere. Moreover, f is counterfactually
invariant if and only if f is X⊥

Z -measurable.

By reading d-separation, the following independence relations can be deduced, assuming that f is
in fact counterfactually invariant:

Proposition 2 (Implications of a counterfactually invariant predictor) Assume that f(X) is a
counterfactually invariant predictor:

1. Under the anticausal graph, f(X) ⊥⊥ Z|Y .

2. Under the causal graph, if Y and Z are not subject to selection (but possibly confounded),
f(X) ⊥⊥ Z

3. Under the causal graph, if the association between Y and Z satisfies that Y ⊥⊥ X|X⊥
z , Z

(called purely spurious) and Y and Z are not subject to confounding (but possibly to se-
lection), f(X) ⊥⊥ Z|Y

A direct way to incorporate this signature of counterfactual invariance into learning is to regularize
the learning objective accordingly. Veitch et al. (2021) also follows this method and show that en-
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forcing the signature leads to increased robustness using both synthetic and real datasets. However,
they only discuss classification problems with binary Z. This simplifies the independence criterion
as this can now be computed as the distance between the respective conditional probabilities. To this
end, they use MMD (Gretton et al., 2012).

2.1 WEAKENING COUNTERFACTUAL INVARIANCE

It is worth to mention, that counterfactual invariance must not necessarily be defined as equality
of random variables (i.e. f(X(z)) = f(X(z′)) for z, z′ ∈ Z) but one may settle on equality in
probability (i.e. PZ(f(X(z))) = PZ′(f(X(z′)))). Whether this formulation allows for sufficient
conditions is an open question, an approach to this can be found in Quinzan et al. (2023) (under
work at the time of the publication of this report). Another approach is to weaken the invariance
criteria by restricting the invariance to certain transformations of the data (Mouli & Ribeiro, 2022).

3 INDEPENDENCE MEASURES FOR LEARNING

In the following we introduce three metrics to measure conditional independence for continuous
variables. In particular, we are interested in a metric that satisfies M(X,Y, Z) = 0 if and only if
X ⊥⊥ Z|Y . In the context of learning, we aim to achieve Ŷ ⊥⊥ Z|Y where Ŷ is the output of some
parameterized model fθ and Z is a protected condition.

3.1 MMD

For completeness, we include the way to enforce conditional indeoendence for binary Z and Y using
MMD Gretton et al. (2012), which was the method included in Veitch et al. (2021). This will be
used as a baseline to measure the effectiveness of lifting up the binary condition.

Objective 1 (MMD)
argmin

h∈H
L(h,X, Y, Z) + λC(X,Y, Z) (1)

with

C =MMD(P (f(X)|Z = 0, Y = 0), P (f(X)|Z = 1, Y = 0))+ (2)
MMD(P (f(X)|Z = 0, Y = 1), P (f(X)|X = 1, Y = 1)) (3)

3.2 HGR

A natural way to express dependence of random variables is given by the maximum correlation
coefficient (Rényi, 1959):

HGR(U, V ) = sup
f,g

ρ(f(U), g(V )) (4)

for U ∈ U , V ∈ V random variables, f, g square integrable functions and the Pearson’s correlation
coefficient ρ. To extend this to conditional dependence one may consider U ∼ PU |Z and V ∼ PV |Z .
To compute any dependence measure of this style the feature functions f and g has to capture all
higher moments where associations may exist between U and V .

3.3 DIRECT APPROXIMATION OF HGR

In Mary et al. (2019) an information theoretic approach is given to approximate HGR using Witsen-
hausen’s characterization (Witsenhausen, 1975).

Theorem 1 (Witsenhausen) Suppose U and V are discrete random variables and consider

Q(u, v) =
π(u, v)√
π(u)

√
π(v)
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where π, πU and πV are the joint and marginal distributions of U and V . Then,

HGR(U, V ) = σ2(Q) (5)

with σ2(Q) denoting the second largest eigenvalue of Q.

Moreover, this extends to the continuous case assuming compactness on Q. To use the above for
learning, Mary et al. (2019) show the upper bound HGR2 ≤ χ2(πU,V , πU ⊗ πV ) which similarly
holds both in the discrete and continuous case. This is then utilized for learning as:

Objective 2 (HGR)

argmin
h∈H

L(h,X, Y, Z) + λ||χ2(πŶ |Y,Z|Y , π ˆY |Y ⊗ πZ|Y )||1 (6)

We will use HGR to measure conditional independence between continuous 1D random variables.
While KDE can also handle higher dimensions, its performance tends to diminish, as discussed in
Chapter 4 of Hart et al. (2000).

3.4 KERNEL-BASED CONDITIONAL COVARIANCE MEASURE

A line of work developed multiple characterization for dependence or conditional dependence based
on measuring (conditional) cross-correlation in Reproducing Kernel Hilbert Spaces. Fukumizu et al.
(2007) proposes to use the Hilbert-Schmidt norm of the normalized conditional cross-covariance
operator and show a kernel-free integral expression in the limit of infinite data. They formulate the
following requirement for kernels to be expressive enough:

Definition 1 (Characteristic Kernel) Let (X ;B) be a measurable space, X a random variable on
X with distribution P , and (H; k) an RKHS on X with k integrable. The mean element of X on H
is defined by the unique element mX ∈ H such that ∀f ∈ H : ⟨mX ; f⟩H = E[f(X)]. Letting P
be the family of all probabilities on (X ;B) , we define the map Mk by Mk : P → H, P → mP .
The kernel k is said to be characteristic if the map Mk is injective, or equivalently, if the condition
∀f ∈ H : EQ[f(X)] = EP [f(X)] implies P = Q.

The main building block of the measure is the cross-covariance operator ΣY X : HX → HY defined
as ⟨g,ΣY XF ⟩HY = Cov[f(X), g(Y )] for random variables X , Y on X × Y with RKHSs HX ,HY

with integrable kernels kX , kY . Moreover, it is shown that ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX , where VY X is

unique and bounded with unit norm and called the normalized cross-covariance operator. Assuming
a third random variable Z on Z with RKHS (HZ ; kZ) the previous definition is expanded to the
normalized conditional cross-covariance operator defined as VY X|Z = VY X − VY ZVZX .

Theorem 2 Let Ẍ = (X,Z) and kẌ = kXkZ and assume that the product kẌkY is characteristic
on (X × Z)× Y and HZ + R is dense in L2(PZ). Then

VY Ẍ|Z = 0 ⇐⇒ X ⊥⊥ Y |Z

Fukumizu et al. (2007) shows that the above measure is Hilbert-Schmidt and proposes to use the
measure ICOND(X,Y |Z) = ||VY Ẍ|Z ||HS . It’s empirical counterpart can be expressed in terms of
the corresponding centered Gram matrices, and thus used for learning as follows:

Objective 3 (Kernelized Conditional Cross Covariance (KCCC))

argmin
h∈H

L(h,X, Y, Z) + λÎCOND
n (X,Y |Z) (7)

which is computed using the centered Gram matrices R· as

ÎCOND
n (X,Y |Z) = ||V̂Y Ẍ|Z ||HS = Tr[RŸRẌ − 2RŸRẌRZ +RŸRZRẌRZ ] (8)
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3.5 CIRCE

Pogodin et al. (2022) approach conditional independence from a slightly different direction, taking
advantage of the following definition of conditional independence, which is a reformulation of the
definition due to Daudin (1980):

Theorem 3 X and Y are Z-conditionally independent if and only if it holds that for all g ∈ L2
X

and h ∈ L2
ZY that E[g(X)(h(Z, Y )− EZ′ [h(Z ′, Y )|Y ])] = 0

This formulation has the advantage that the inner expectation can be precomputed as it is indepen-
dent of X . Analogously to 3.4 they show that if the spaces G and F are RKHSs with bounded
feature maps ϕ : X → G and ψ : (Z × Y) → F then the following operator is Hilbert-Schmidt:

CXY |Z = E[ϕ(X)⊗ (ψ(Z, Y )− EZ′ [ψ(Z ′, Y )|Y ])] ∈ HS(G,F) (9)

Moreover, they establish that zero norm of the operator similarly implies conditional independence:

Theorem 4 For G and F with L2-universal (Sriperumbudur et al., 2011) kernels we have

||CXY |Z ||HS = 0 ⇐⇒ X ⊥⊥ Z|Y (10)

For radial basis kernels Sriperumbudur et al. (2011) show that characteristicity implies universality,
connecting the two theories. The above definition gives rise to a third regularizer for measuring
conditional invariance:

Objective 4
argmin

h∈H
L(h,X, Y, Z) + λĈXY |Z (11)

where the empirical counterpart ĈXY |Z is computed as:

1

B(B − 1)
Tr(KXX(KY Y ⊙KZZ) (12)

As described earlier, only KXX must be computed for every minibatch, EZ′ [h(Z ′, Y )|Y ])] is esti-
mated on heldout data with kernel ridge regression. The authors propose to use leave-on-out cross
validation to obtain the kernel and ridge parameters. For the full algorithm we refer the reader to the
original paper Pogodin et al. (2022).

4 EMPIRICAL COMPARISON

In the experimental section we both aim to (1) compare the different independence measure for
continuous confounder variable as well as (2) evaluate the advantage of lifting up the binary or 1D
restriction on Z.

4.1 EXPERIMENTAL DETAILS

We experiment with the ”Communities and Crimes” dataset (Redmond & Deane, 2002) and the
Amazon reviews dataset (McAuley et al., 2015). For the crime dataset, we use a MLP that we train
with a learning rate of 0.001 using the Adam optimizer. For the reviews dataset, we first create
embeddings of the reviews with the BERT Base model (Devlin et al., 2018), and then apply a
single linear layer, trained with the same parameters as before.

4.2 CRIME DATASET

In the ”Communities and Crime” dataset (Redmond & Deane, 2002), the primary task is to predict
the crime rate for specific regions in the U.S. using a combination of socio-economic, law enforce-
ment and crime statistics. In this problem, Z is considered as the ratio of different ethnicities in the
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Regularizer Weight R2 p (∗10−2) KCCC Circe
None 0 0.57196 0 79.00524 0.00911

KCCC

0.001 0.56923 0 67.31462 0.00928
0.003 0.48096 0 68.38218 0.00886
0.005 0.40843 0 64.22034 0.00903
0.007 0.40993 0 66.37890 0.00884
0.01 0.33253 0.0007 55.59844 0.00858

Circe

10 0.53384 0 79.67969 0.00896
30 0.52796 0 79.03073 0.00879
50 0.45208 0.04411 80.53570 0.00842
70 0.35230 0.56986 81.47501 0.00823
90 0.26100 0.69175 80.86659 0.00829

HGR

0.1 0.55586 0.00001 80.03571 0.00883
0.5 0.55858 0.00017 81.29045 0.00863
1 0.51590 0.00098 82.62284 0.00868
2 0.45225 0 78.60696 0.00868
5 0.35418 0.00088 77.79527 0.00848

MMD

0.01 0.56490 0 78.18658 0.00896
0.05 0.53423 0 82.05845 0.00892
0.1 0.53213 0 81.64593 0.00876
0.5 0.43871 0 85.40918 0.00931
1 0.41252 0 81.35972 0.00871

Table 1: Results for the Communities and Crime dataset.

neighborhood, originally a 4-dimensional feature vector. One generally assumes a causal relation-
ship between X and Y and selection. Moreover, the purely spurious assumption by the framework
due to Veitch et al. (2021) is also natural, therefore we enforce conditional independence.

We want to see how using the 4D Z helps over using measures that were developed only for 1D
variable, and thus we must reduce Z’s dimensionality. We compare KCCC and Circe where we use
the full Z to HGR where only the racePtBlack attribute was used. Further, for MMD we binarize
this using the sign function after feature normalization.

As the relationship between Z andX is even conceptually unknown, we cannot measure directly the
robustness of f w.r.t Z. Instead, we cross-validate the measures, and compute KCCC and Circe on
the test set using the full Z, as well as run a conditional independence test as introduced by Zhang
et al. (2011).

Results: We see that neither of the metrics show improvements in the conditional independence
for MMD, and only a slight increase for HGR. Using KCCC as the regularizer, it’s effect can be
measured on the test set but it is not reflected in a significant increase in the p-value. On the other
hand, Circe leads to larger p-values, as well as a deacrease if measured by itself, on the test set.
However, this trend cannot be seen in KCCC. This disparity is interesting, and may stem from the
strong dependence on the kernel parameter chosen. We discuss new measures in Section ?? that are
currently under development for conditional independence and, instead of relying on kernels, uses
neural networks to learn the necessary representation.

4.3 AMAZON REVIEWS DATASET

In the Amazon reviews dataset we predict the usefulness of a review based on the review text.
Conditional independence in enforced w.r.t. the sentiment of the review. The task clearly resembles
a causal relationship between X and Y . It can be argued that there is a selection effect, as people
may tend to flag positive reviews more often as helpful then negative ones.

We measure sentiment through three proxy methods. First, we introduce a binary confounder where
Z is set to positive for reviews with more than 3 stars and negative for those with fewer than 3 stars;
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Regularizer Confounder Weight Accuracy VCF
None None 0 0.775 0.29960

KCCC

continuous

0.005 0.765 0.28751
0.007 0.785 0.27986
0.01 0.81 0.27598
0.03 0.735 0.27403
0.05 0.61 0.31496

discrete

0.005 0.81 0.27683
0.007 0.79 0.28762
0.01 0.8 0.27845
0.03 0.795 0.26795
0.05 0.670 0.30312

Circe

continuous

1 0.78 0.28036
3 0.755 0.28294
5 0.72 0.28759
7 0.695 0.28836

10 0.695 0.29141

discrete

1 0.8 0.27930
3 0.765 0.28661
5 0.75 0.29456
7 0.745 0.29493

10 0.73 0.29761

HGR

continuous

0.01 0.78 0.29802
0.03 0.78 0.29876
0.05 0.77 0.30146
0.07 0.78 0.30572
0.1 0.77 0.30249

discrete

0.01 0.775 0.29929
0.03 0.78 0.29703
0.05 0.775 0.29796
0.07 0.77 0.29720
0.1 0.77 0.29624

MMD binary

0.01 0.77500 0.29694
0.03 0.795 0.28760
0.05 0.79 0.28073
0.07 0.78 0.28953
0.1 0.770 0.29851

Table 2: Results for the Amazon reviews dataset.

reviews with exactly 3 stars are excluded. Second, we derive a discrete value for Z by normalizing
the star rating against the maximum possible rating. Lastly, we employ a sentiment analyzer to
extract the sentiment of a sentence based on its adjectives. Detailed specifications of these methods
can be found in Appendix A.

Whilst the ground-truth relationship between X and Z is unknown, one may assume that the sen-
timent of a sentence is determined by the adjectives it contains. Thus, to create perturbed data, we
swap the adjectives by it’s antonyms. In specific, we gather all possible antonyms for every adjec-
tive in the sentence, select a random subset of the adjectives that we will alter, and create the new
sentence by changing the chosen adjectives by a random antonym of theirs. For every sentence we
create at most 20 such samples. To measure the robustness of the predictor, we measure the variance
of the predictor over the perturbed dataset:

VCF = Ex∼X [Vz∼Z [f(x(z))]] (13)
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Results: We observe only small differences between the VCF scores independent of the measure
or the proxy for sentiment used. The lowest VCF score is achieved by KCCC for the discrete
confounder, but similar results are achieved for the continuous case too. We note, that this may not
only depend on kernel parameters or the way the proxy is computed, but also on how we create
counterfactual samples.

4.4 DISCUSSION AND OUTLOOK

In this exploratory work we discussed how causal models can be used to argue for necessary condi-
tions for a robust predictor. A strong assumption of the framework due to Veitch et al. (2021) is the
purely spuriousness in the causal case with selection. Eastwood et al. (2023) discuss how to include
spurious features that may still contain information about Y . Further research could establish con-
nections between the two works and experiment with how the methods proposed by the latter may
be included in learning a robust predictor.

We also examined several measures for conditional independence based on kernel methods. A sig-
nificant limitation of these methods is the challenge in selecting appropriate kernel parameters, for
which there is not yet a theoretically justified approach. Concurrent work due to Heiner et al. pro-
poses to use neural networks and learn sufficient representations (for current reference, see Kremer
et al. (2022)). These representations then serve as a basis for measuring conditional independence.
The optimization task evolves into a minimax problem concerning both the predictor parameters and
the representation parameters. Although this method bypasses the challange of kernel parameter se-
lection, optimizing such objectives can pose challenges, as seen in GAN training Goodfellow et al.
(2014a). A future direction would be to compare this novel metric with previously established ones.

We experimented with both tabular and text data, to see how lifting up the binary condition on the
confounder helps to achieve a more robust predictor. Our results showed minor improvements in
both experiments, but already indicated the necessity of measures that enable measuring indepen-
dence w.r.t continuous, high-dimensional variables. Still the dependency on kernel parameters is a
great limitations.

Lastly, it would be intriguing to see how generative models for text (such as ) change if they fine-
tuned with the proposed regularization. One analyze changes in the attention mechanism.
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A APPENDIX

A.1 HYPERPARAMETER CHOICES

We used the Gaussian kernel (K(x, y) = e−
∥x−y∥2

2σ2 . For choosing kernel parameters, we swept over
σ = [1, 0.5, 0.1, 0.05, 0.01]. The chosen kernel paramater was used also to measure the indepen-
dence on the test set.

A.2 AMAZON REVIEWS DATASET

We use the Clothing Shoes and Jewelry part of the amazon reviews dataset McAuley et al. (2015).
We create 10000 examples, where drop any for which no counterfactual example could be generated;
the review text, or the star-rating was massing; or received a 3-star rating.

A.2.1 CREATING COUNTERFACTUAL SENTENCES

We first generated a list of adjectives and their antonyms using ChatGPT V4. For every sentence,
we then marked every adjectives using the NLTK’s part of speech tagger (Bird et al., 2009). We then
choose a random subset of the adjectives and swap them with a randomly chosen corresponding
antonym. For every sentence, we create at most 20 counterfactual examples.
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